Activation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells

نویسندگان

  • Youpei Wang
  • Xiang Zheng
  • Qing Wang
  • Meiqin Zheng
  • Lingxia Pang
چکیده

OBJECTIVES High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt signaling on HG-mediated damages. MATERIALS AND METHODS Wnt3a was treated to HG-stressed human primary foreskin fibroblasts and the levels of Wnt signaling markers and cell proliferation were monitored. In addition, Wnt3a and NF-κB signaling inhibitor were assisted to analyze the relationship between two pathways. RESULTS The results indicated that HG treatment repressed β-catenin level, and Wnt3a treatment increased the levels of β-catenin and FZD8 as well as cell proliferation. RNA-seq based transcriptome analysis identified 207 up-regulated and 200 down-regulated genes upon Wnt3a supply. These altered genes are distributed into 20 different pathways. In addition, gene ontology (GO) analysis indicates that 20 GO terms are enriched. Wnt signaling genes were further verified by qRT-PCR and the results were similar with RNA-seq assay. Since NF-κB signaling negatively regulates Wnt marker gene expression, Bay117082, a typical NF-κB signaling inhibitor and Wnt3a were supplemented for testing β-catenin and phosphorylated IκBα (p-IκBα), respectively. CONCLUSION HG positively inhibits Wnt signaling, and signaling activation via supplementation of Wnt3a rescued the defect caused by HG. NF-κB signaling negatively regulates accumulation of β-catenin, but Wnt signaling has no effects on IκBα activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells

Objective(s): High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt sig...

متن کامل

Re-activation of Wnt/β-catenin Signaling Pathway in Hair Follicle Stem Cells in Treatment of Androgenetic Alopecia

Hair loss is a common hair disorder in human population. It affects quality of life and there are ongoing attempts to find permanent treatment for this condition. But, today there is no completely safe and protective treatment for all. Hair follicle stem cells are alive, but quiescence in androgenetic alopecia and are potentially active and can proliferate and differentiate, then regenerate hai...

متن کامل

The Role of Wnt/β-catenin Signaling Pathway in Rat Primordial Germ Cells Reprogramming and Induction into Pluripotent State

 Primordial Germ Cells (PGCs) are unipotent precursors of the gametes. PGCs can give rise to a type of pluripotent stem cells in vitro that are called embryonic germ (EG) cells. PGCs can also acquire such pluripotency in vivo and generate teratomas. Under specific culture conditions, PGCs can be reprogrammed to embryonic germ cells which are capable of expression of key pluripotency marker...

متن کامل

The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy

Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...

متن کامل

Effect of Low–Level Helium-Neon Laser Irradiation on the Release of Interleukin 6 and Basic Fibroblast Growth Factor from Cultured Human Fibroblasts in High Glucose Medium

Purpose: Low level laser therapy is suggested as a new therapeutic method in diabetic wound healing. This survey aimed to evaluate the effects of low level laser on human fibroblasts cultured in high glucose cultures. Materials and Methods: The human skin fibroblasts were cultured under standard condition. The cells were cultured in high glucose culture medium (15mM/L) for a week and two weeks ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2017